
Chapter 3

Running Standard Java Programs
In This Chapter
▶	Compiling and running a program
▶	Working with a workspace
▶	Editing your own Java code

I
f you’re a programming newbie, running a program probably means, for
you, clicking the mouse. You want to run Internet Explorer, so you

double-click the Internet Explorer icon. That’s all there is to it. As far as
you’re concerned, Internet Explorer is a black box. How the program does
whatever it does is none of your concern.

But when you create your own program, the situation is a bit different. You
start with no icon to click, and possibly no well-defined notion of what the
program should (and should not) do.

So how do you create a brand-new Java program? Where do you click? How
do you save your work? How do you get the program to run? What do you do
if, at first, the program doesn’t run correctly?

This chapter tells you what you need to know.

	 The example in this chapter is a standard Oracle Java program. A standard
Oracle Java program runs only on a desktop or laptop computer. The example
cannot run on an Android device. For an example that runs on Android
devices, see Chapter 4.

Running a Canned Java Program
The best way to get to know Java is to “do Java,” by writing, testing, and
running your own Java programs. This section prepares you by describing
how to run and test a program. Rather than write your own program, you run
one that I’ve already written for you. The program calculates the monthly
payments on a home mortgage loan, as shown in Figure 3-1.

54 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-1:
A run of the

mortgage
program in

this chapter.
	

Here’s how to run the mortgage program:

	 1.	 First, follow the instructions in Chapter 2 for installing Java, installing
and configuring Eclipse, and downloading this book’s sample programs.

		 Thank goodness! You don’t have to follow those instructions more than
once.

	 2.	 Launch Eclipse.

		 The Workspace Launcher dialog box in Eclipse appears, as shown in
Figure 3-2.

	

Figure 3-2:
The

Workspace
Launcher in

Eclipse.
	

		 For a complete how-to on launching Eclipse, see Chapter 2.

		 A workspace is a folder on the computer’s hard drive. Eclipse stores
Java programs in one or more workspace folders. Along with these Java
programs, each workspace folder contains some Eclipse settings. These
settings store information such as the version of Java that you’re using,
the colors you prefer for words in the editor, the size of the editor area
when you drag the area’s edges, and other preferences. You can have
several workspaces with different programs and different settings in
each workspace.

		 By default, the Workspace Launcher offers to open whatever workspace
you opened the last time you ran Eclipse. In this example, you open the
workspace that you use in Chapter 2, so don’t modify anything in the
Workspace field.

55 Chapter 3: Running Standard Java Programs

	 3.	 In the Workspace Launcher dialog box, click OK.

		 The big Eclipse workbench stares at you from the computer screen, as
shown in Figure 3-3.

	

Figure 3-3:
The Eclipse
workbench.

	

		 In Figure 3-3, the leftmost part of the workbench is the Eclipse Package
Explorer, which contains numbers such as 03-01, 04-01, and so on. Each
number is the name of an Eclipse project, which is, formally, a collection
of files and folders inside a workspace. Intuitively, a project is a basic
work unit. For example, a self-contained collection of Java program files
to manage a CD collection (along with the files containing the data) may
constitute a single Eclipse project.

		 Looking again at the Package Explorer in Figure 3-3, you see projects
named 03-01, 04-01, and so on. My project 03-01 holds the code in
Listing 3-1. Project 04-01 contains the Android app whose code begins
in Listing 4-1 (the first code listing in Chapter 4 of this book). Project
05-03 contains the code in Listing 5-3. The project named 03-Mortgage
is a slight anomaly because the code for this chapter’s Mortgage
example isn’t in any of the listings.

		 Eclipse project names can include letters, digits, blank spaces, and other
characters; for the names of this book’s examples, I stick with digits and
dashes.

		 To read more about topics such as the Eclipse Package Explorer, see the
later section “What’s All That Stuff in the Eclipse Window?”

56 Part I: Getting Started with Java Programming for Android Developers

		 When you launch Eclipse, you may see different elements than the ones
shown in Figure 3-3. You may see the Eclipse Welcome screen with only
a few icons in an otherwise barren window. You may also see a workbench
like the one shown in Figure 3-3, but with no list of numbers (03-01,
04-01, and so on) in the Package Explorer. If so, you may have missed
some instructions in Chapter 2 for configuring Eclipse. Alternatively, you
may have modified the workspace name in the Eclipse Workspace
Launcher dialog box.

		 In any case, make sure that you see numbers like 03-01 and 04-01
in the Package Explorer. Seeing these numbers ensures that Eclipse is
ready to run the sample programs from this book.

	 4.	 In the Package Explorer, click the 03-Mortgage branch.

		 As a result, the 03-Mortgage project appears highlighted.

		 To see a sneak preview of the Java program you’re running in Project
03-Mortgage, expand the 03-Mortgage branch in the Package Explorer.
Inside the 03-Mortgage branch, you find the src branch, which in
turn contains a (default package) branch. Inside the (default
package) branch, you find the MortgageWindow.java branch. This
MortgageWindow.java branch represents my Java program. Double-
clicking the MortgageWindow.java branch makes my code appear in
the Eclipse editor, as shown in Figure 3-4.

	

Figure 3-4:
Java code

in the
Eclipse
editor.

	

	 5.	 Choose Run➪Run As➪Java Application from the main menu, as
shown in Figure 3-5.

		 When you choose Run As➪Java Application, the computer runs the
project’s code. (In this example, the computer runs a Java program
that I wrote.) The program displays the Mortgage Payment Calculator
window on the screen, as shown in Figure 3-6.

57 Chapter 3: Running Standard Java Programs

	

Figure 3-5:
One way to

run the code
in Project

03-Mortgage.
	

	

Figure 3-6:
The

Mortgage
Payment

Calculator
begins
its run.

	

	 6.	 Type numbers into the fields in the Mortgage Payment Calculator
window. (Refer to Figure 3-1.)

		 When you type a principal amount in Step 6, don’t include the country’s
currency symbol and don’t group the digits. (U.S. residents: Omit dollar
signs and commas.) For the percentage rate, omit the % symbol. For the
number of years, don’t use a decimal point. If you break any of these
rules, the Java code can’t read your number, and my Java program
displays nothing in the Payment row.

		 Disclaimer: Your local mortgage company charges more (a lot more)
than the amount that my Java program calculates.

If you follow this section’s instructions and you don’t see the results I
describe, you can try these three strategies, listed in order from best to
worst:

	 ✓	Double-check all steps to make sure that you followed them correctly.

	 ✓	Contact me at Java4Android@allmycode.com via e-mail, @allmycode
on Twitter, or /allmycode on Facebook If you describe what happened,
I can probably figure out what went wrong and tell you how to correct
the problem.

	 ✓	Panic.

58 Part I: Getting Started with Java Programming for Android Developers

Typing and Running Your Own Code
The earlier section “Running a Canned Java Program” is all about running
someone else’s Java code (code that you download from this book’s website).
But, eventually, you’ll write code on your own. This section shows you how
to create code by using the Eclipse IDE.

Separating your programs from mine
You can separate your code from this book’s examples by creating a separate
workspace. Here are two (distinct) ways to do it:

	 ✓	When you launch Eclipse, type a new folder name in the Workspace
field of the Workspace Launcher dialog box in Eclipse.

		 If the folder doesn’t already exist, Eclipse creates the folder. If the folder
already exists, the Eclipse Package Explorer lists any projects that the
folder contains.

	 ✓	In the main menu in the Eclipse workbench, choose File➪Switch
Workspace, as shown in Figure 3-7.

	

Figure 3-7:
Switching
to a differ-

ent Eclipse
workspace.

	

		 When you choose File➪Switch Workspace, Eclipse offers you a few
of your previously opened workspace folders. If your choice of folder
isn’t in the list, select the Other option. In response, Eclipse reopens its
Workspace Launcher dialog box.

59 Chapter 3: Running Standard Java Programs

Writing and running your program
Here’s how to create a new Java project:

	 1.	 Launch Eclipse.

	 2.	 From the Eclipse menu bar, choose File➪New➪Java Project.

		 The Create a Java Project dialog box appears.

	 3.	 In the Create a Java Project dialog box, type a name for the project
and then click Finish.

		 In Figure 3-8, I type the name MyFirstProject.

	

Figure 3-8:
Getting

Eclipse to
create a

new project.
	

		 If you click Next instead of Finish, you see other options that you don’t
need right now. To avoid confusion, just click Finish.

		 Clicking Finish returns you to the Eclipse workbench, with MyFirst
Project in the Package Explorer, as shown in Figure 3-9.

60 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-9:
Your project

appears in
the Package

Explorer in
Eclipse.

	

		 The next step is to create a new Java source code file.

	 4.	 Select the newly created project in the Package Explorer.

		 To create Figure 3-9, I selected MyFirstProject instead of
SomeOtherProject.

	 5.	 In the Eclipse main menu, choose File➪New➪Class.

		 The Eclipse Java Class dialog box appears, as shown in Figure 3-10.

	

Figure 3-10:
Getting

Eclipse to
create a

new Java
class.

	

61 Chapter 3: Running Standard Java Programs

		 Like every other windowed environment, Eclipse provides many ways to
accomplish the same task. Rather than choose File➪New➪Class, you
can right-click MyFirstProject in the Package Explorer in Windows
(or control-click MyFirstProject in the Package Explorer on a Mac).
In the resulting context menu, choose New➪Class. You can also start by
pressing Alt-Shift+N in Windows (or Option-Command-N on a Mac). The
choice of clicks and keystrokes is up to you.

	 6.	 In the Name field in the Java Class dialog box, type the name of the
new class.

		 In this example, I use the name MyFirstJavaClass, with no blank
spaces between the words in the name. (Refer to Figure 3-10.)

		 The name in the Java Class dialog box cannot have blank spaces, and
the only allowable punctuation symbol is the underscore character
(_). You can name the class MyFirstJavaClass or My_First_Java_
Class, but you can’t name it My First Java Class, and you can’t
name it JavaClass,MyFirst. Finally, you can’t start a class name with
a digit. For example, you can name the class Go4It but not 2bOrNot2b.

	 7.	 In the Package field in the Java Class dialog box, type a package
name. (Refer to Figure 3-10.)

		 In Java, you group code into bunches called packages. And in the
Android world, each app comes in its own package.

		 Don’t worry much about making up package names. If you have your
own domain name (allyourcode.org, for example), you should
reverse the domain name (resulting in org.allyourcode) and then
add a descriptive word. For example, org.allyourcode.myfirst
project is a good package name. If you don’t have a domain name, any
words (separated from one another by dots) will work.

		 The package name contains one or more words. Each word can be any
combination of letters, digits, and underscores (_) as long as the word
doesn’t start with a digit. A package name is a bunch of these words,
separated from one another by dots. For example, org.allyourcode.
Go4It is a valid package name, but org.allyourcode. 2bOrNot2b
is not. (You can’t start the third part of the package name with the digit
2. For that matter, you can’t start any of the three words in a name like
org.allyourcode.myfirstproject with a digit.)

	 8.	 Put a check mark in the public static void main(String[]
args) check box.

		 The check mark tells Eclipse to create some boilerplate Java code.

	 9.	 Accept the defaults for everything else in the Java Class dialog box.
(In other words, click Finish.)

62 Part I: Getting Started with Java Programming for Android Developers

		 Clicking Finish brings you back to the Eclipse workbench. Now
MyFirstProject contains a file named MyFirstJavaClass.java.
For your convenience, the MyFirstJavaClass.java file already has
some code in it. The Eclipse editor displays the Java code, as shown in
Figure 3-11.

	

Figure 3-11:
Eclipse

writes some
code in the

editor.
	

	 10.	 Replace an existing line of code in the new Java program.

		 Type a line of code in the Eclipse editor. Replace the line
// TODO Auto-generated method stub

		 with these lines:
javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);

		 Any program containing these lines of code runs only on a desktop (or
laptop) computer. The code javax.swing.JOptionPane.show
MessageDialog belongs to standard Oracle Java, but not to Android
Java.

		 Copy the new lines of code exactly as you see them in Listing 3-1.

	 •	Spell each word exactly the way I spell it in Listing 3-1.

	 •	Capitalize each word exactly the way I do in Listing 3-1.

	 •	Include all the punctuation symbols — the dots, the quotation
marks, the semicolon — everything.

		 When you’re done, the code in the Eclipse editor should look exactly
like the code in Listing 3-1.

63 Chapter 3: Running Standard Java Programs

Listing 3-1:   A Program to Display a Greeting
public class MyFirstJavaClass {

 /**
 * @param args
 */
 public static void main(String[] args) {
 javax.swing.JOptionPane.showMessageDialog
 (null, “Hello”);
 }

}

		 Java is case-sensitive, which means that Showmessagedialog isn’t the
same as showMessageDialog. If yOu tyPe Showmessagedialog, your
progrAm won’t worK. Be sUre to cAPItalize your codE eXactLy as it is
shown in Listing 3-1.

Do I see formatting in my Java program?
When you use the Eclipse editor to write a
Java program, you see words in various colors.
Certain words are always in blue. Other words
are always in black. You even see some bold
and italic phrases. You may think you see
formatting, but you don’t. Instead, what you see
is syntax coloring or syntax highlighting.

No matter what you call it, the issue is this:

	✓	 In Microsoft Word, elements such as bold
formatting are marked inside a document.
When you save MyPersonalDiary.
doc, the instructions to make the words
love and hate bold are recorded inside the
MyPersonalDiary.doc file.

	✓	 In a Java program editor, elements such
as bold and coloring aren’t marked inside

the Java program file. Instead, the editor
displays each word in a way that makes
the Java program easy to read.

For example, in a Java program, certain words
(such as class, public, and void) have
their own, special meanings. So the Eclipse
editor displays class, public, and void
in bold, reddish letters. When I save my Java
program file, the computer stores nothing about
bold, colored letters in my Java program file.
But the editor uses its discretion to highlight
special words with reddish coloring.

Another editor may display the same words in
a blue font. Another editor (such as Windows
Notepad) displays all words in plain, old black.

64 Part I: Getting Started with Java Programming for Android Developers

		 Some people notice the difference between “curly” quotation marks
and “straight” quotation marks. Is the distinction between the two
types useful? (Do you see the difference?) Is it even appropriate to use
the words curly and straight for the two kinds of quotation marks? In a
Java program, a word like “Hello” (surrounded by straight quotation
marks) stands for a string of characters. In fact, the code in Listing 3-1
makes the letters Hello appear on the user’s screen. Here’s the rule:

		 In Java, to denote a string of characters, always use straight quotation
marks; never curly quotation marks.

		 In practice, if you copy code from a Kindle or from another electronic
medium, you’re probably copying curly quotation marks, and the code
is incorrect. Fortunately, when you use the computer keyboard to type
code in the Eclipse editor, you automatically type straight quotation
marks. That’s nice.

		 In a Java program, almost none of the spacing and indentation matters. In
Listing 3-1, I don’t need all the blank spaces before (null, “Hello”),
but the blank spaces help me to remember that (null, “Hello”) is a
continuation of the showMessageDialog stuff. In other words, all the
characters between the word javax and the word “Hello” are part of
one big Java command. I separate the command into two lines because if
I didn’t, the command would run off the edge of the page.

		 If you type everything correctly, you see the information shown in
Figure 3-12.

	

Figure 3-12:
A Java

program in
the Eclipse

editor.
	

		 If you don’t type your part of the code exactly as it’s shown in Listing 3-1,
you may see jagged red underlines, tiny rectangles with X-like markings
inside them, or other red marks in the Editor, as shown in Figure 3-13.

65 Chapter 3: Running Standard Java Programs

		 The red marks in the Eclipse editor refer to compile-time errors in the
Java code. A compile-time error (also known as a compiler error) is an
error that prevents the computer from translating the code. (See the talk
about code translation in Chapter 1.)

	

Figure 3-13:
A Java

program,
typed

incorrectly.
	

		 Here, the error markers in Figure 3-13 appear on line 9 of the Java
program. Line numbers are designed to appear in the editor’s left
margin, but they do not appear by default. To make the Eclipse editor
display line numbers, choose Window➪Preferences (in Windows) or
Eclipse➪Preferences (on a Mac). Then choose General➪Editors➪Text
Editors. Finally, add a check mark in the Show Line Numbers check box.

		 To fix compile-time errors, you must become a dedicated detective and
join the elite squad known as Law & Order: JPU (Java Programming Unit).
You seldom find easy answers. Instead, comb the evidence slowly and
carefully for clues. Compare everything you see in the editor, character
by character, with my code in Listing 3-1. Don’t miss a single detail,
including spelling, punctuation, and uppercase versus lowercase.

		 Eclipse has a few nice features to help you find the source of a compile-
time error. For example, you can hover over the jagged red underline.
When you do, you see a brief explanation of the error along with
suggestions for repairing the error — some quick fixes, in other words.
See Figure 3-14.

		 In Figure 3-14, a pop-up message tells you that Java doesn’t know what
the word shoWmESsaGediAlog means — that is, shoWmESsaGediAlog
is “undefined.” Near the bottom of the figure, one quick-fix option is to
repair the incorrect capitalization by changing shoWmESsaGediAlog to
showMessageDialog.

66 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-14:
Eclipse

offers
helpful

suggestions.
	

		 When you click the Change to ‘showMessageDialog’ (..) option,
the Eclipse editor replaces shoWmESsaGediAlog with showMessage
Dialog. The editor’s error markers disappear, and the incorrect code
shown in Figure 3-13 changes to the correct code shown in Figure 3-12.

	 11.	 Make any changes or corrections to the code in the Eclipse editor.

		 When at last you see no jagged underlines or blotches in the editor,
you’re ready to try running the program.

	 12.	 Select MyFirstJavaClass either by clicking inside the editor or by
clicking the MyFirstProject branch in the Package Explorer.

	 13.	 In the Eclipse main menu, choose Run➪Run As➪Java Application.

		 That does the trick. The new Java program runs, and you see the Hello
message shown in Figure 3-15. It’s like being in heaven!

	

Figure 3-15:
Running the

program
shown in

Listing 3-1.
	

What can possibly go wrong?
Ridding the editor of jagged underlines is cause
for celebration. Eclipse likes the look of your code,
so from that point on, it’s smooth sailing. Right?

Well, it ain’t necessarily so. In addition to some
conspicuous compile-time errors, the code can
have other, less obvious errors.

Imagine someone telling you to “go to the
intersection, and then rurn tight.” You notice
immediately that the speaker has made a
mistake, and you respond with a polite “Huh?”
The nonsensical rurn tight phrase is like a
compile-time error. Your “Huh?” is like the
jagged underlines in the Eclipse editor. As a

67 Chapter 3: Running Standard Java Programs

human being who listens, you may be able to
guess what rurn tight means, but the Eclipse
editor never dares to fix the mistakes in your
code.

In addition to compile-time errors, other kinds of
gremlins can hide inside a Java program:

	✓	 Unchecked runtime exceptions: You see
no compile-time errors, but when you run
the program, the run ends prematurely.
Somewhere in the middle of the run, the

instructions tell Java to do something that
can’t be done. For example, while you’re
running the Mortgage program in the
earlier section “Running a Canned Java
Program,” you type 1,000,000.00
instead of 1000000.00. Java doesn’t
like the commas in the number, so the
program crashes and Eclipse displays a
nasty-looking message, as shown in the
first figure.

		 This example shows an unchecked runtime
exception — the equivalent of someone
telling you to turn right at the intersection
when the only thing to the right is a big,
brick wall. The Eclipse editor doesn’t warn
you about an unchecked runtime exception
because, until you run the program, the
computer can’t predict that the exception
will occur.

	✓	 Logic errors: You see no error markers in
the Eclipse editor, and when you run the
code, the program runs to completion. But
the answer isn’t correct. Instead of $552.20
in the second figure, the payment amount
is $551,518,260.38. The program incorrectly
tells you to pay thousands of times what
your house is worth and tells you to pay
this amount each month! It’s the equivalent
of being told to turn right rather than turn
left. You can drive in the wrong direction for
quite a long time.

		 Logic errors are the most challenging
errors to find and to fix. And worst of all,
logic errors often go unnoticed. In March
1985, I got a monthly home heating bill
for $1,328,932.21. Clearly, a computer had
printed the incorrect amount. When I
called the gas company to complain, the
telephone service representative said,
“Don’t be upset. Pay only half that amount.”

	✓	 Compile-time warnings: A warning isn’t
as severe as an error message. So when
Eclipse notices suspicious behavior in
a program, the editor displays a jagged
yellow underline, an exclamation point
enclosed in a tiny yellow icon, and a few
other not-so-intrusive clues.

		 For example, in the third figure, you can see
that, on Line 9, I added material related to
amount = 10 to the code from Listing
3-1. The problem is, I never make use of the
amount or of the number 10 anywhere in
my program. With its faint, yellow markings,
Eclipse effectively tells me “Your amount
= 10 code isn’t bad enough to be a
showstopper. Eclipse can still manage to
run the program. But are you sure you want
amount = 10 (this material that seems
to serve no purpose) in your program?”

(continued)

68 Part I: Getting Started with Java Programming for Android Developers

(continued)

		 Imagine being told, “Turn when you reach
the intersection.” The direction may be
just fine. But if you’re suspicious, you ask,
“Which way should I turn? Left or right?”

		 When you’re sure that you know what
you’re doing, you can ignore warnings
and worry about them later. But a warning
can be an indicator that the code has
a more serious problem. My sweeping
recommendation is this: Pay attention to

warnings. But if you can’t figure out why
you’re seeing a particular warning, don’t
let the warning prevent you from moving
forward.

		 Icon yellow?

		 Your code is mellow.

		 Icon red?

		 Your code is dead!

What’s All That Stuff in
the Eclipse Window?

Believe it or not, an editor once rejected one of my book proposals. In the
margin, the editor scribbled “This is not a word” next to text such as can’t,
it’s, and I’ve. To this day, I still do not know what this editor did not like
about contractions. My own opinion is that language always needs to expand.
Where would we be without a few new words — words such as dotcom,
infomercial, and vaporware?

Even the Oxford English Dictionary (the last word in any argument about
words) grows by more than 4,000 entries each year. That’s an increase of
more than 1 percent per year — about 11 new words per day!

69 Chapter 3: Running Standard Java Programs

The fact is, human thought resembles a high-rise building: You can’t build
the 50th floor until you’ve built at least part of the 49th. You can’t talk about
spam until you have a word such as e-mail. In these fast-paced, changing
times, you need verbal building blocks. That’s why this section contains a
bunch of new terms.

In this section, each newly defined term describes an aspect of the Eclipse
IDE. Before you read all this Eclipse terminology, I provide these disclaimers:

	 ✓	This section is optional reading. Refer to this section if you have
trouble understanding some of this book’s instructions. But if you have
no trouble navigating the Eclipse IDE, don’t complicate things by fussing
over the terminology in this section.

	 ✓	This section provides explanations of terms, not formal definitions
of terms. Yes, my explanations are fairly precise; but no, they’re not
airtight. Almost every description in this section has hidden exceptions,
omissions, exemptions, and exclusions. Take the paragraphs in this
section as friendly reminders, not as legal contracts.

	 ✓	Eclipse is a useful tool. But Eclipse isn’t officially part of the Java
ecosystem. Although I don’t describe details in this book, you can write
Java programs without ever using Eclipse.

Understanding the big picture
Your tour of Eclipse begins with the big Burd’s-eye view:

	 ✓	Workbench: The Eclipse desktop (refer to Figure 3-3). The workbench is
the environment in which you develop code.

	 ✓	Area: A section of the workbench. The workbench shown in Figure 3-3
contains five areas. To illustrate the point, I’ve drawn borders around
each area, as shown in Figure 3-16.

	 ✓	Window: A copy of the Eclipse workbench. In Eclipse, you can have
several copies of the workbench open at a time. Each copy appears in its
own window.

		 To open a second window, go to the main Eclipse menu bar and choose
Window➪New Window.

	 ✓	Action: A choice that’s offered to you, typically when you click something.
For example, when you choose File➪New from the Eclipse main menu
bar, you see a list of new elements you can create. The list usually
includes Project, Folder, File, and Other, but it may also include items
such as Package, Class, and Interface. Each of these things (each item on
the menu) is an action.

70 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-16:
The work-

bench is
divided into

areas.
	

Views, editors, and other stuff
The next bunch of terms deals with things called views, editors, and tabs.

	 You may have difficulty understanding the difference between views and
editors. (A view is like an editor, which is like a view, or something like that.)
If views and editors seem the same to you, and you’re not sure whether you
can tell which is which, don’t be upset. When you’re an ordinary Eclipse user,
the distinction between views and editors comes naturally as you gain
experience using the workbench. You rarely have to decide whether the thing
you’re using is a view or an editor.

Anyway, if you ever have to distinguish between a view and an editor, here’s
what you need to know:

	 ✓	View: A part of the Eclipse workbench that displays information for you
to browse. In the simplest case, a view fills up an area in the workbench.
For example, in Figure 3-3, earlier in this chapter, the Package Explorer
view fills up the leftmost area.

		 Many views display information as lists or trees. For example, in
Figure 3-9, the Package Explorer view contains a tree.

71 Chapter 3: Running Standard Java Programs

		 You can use a view to make changes. For example, to delete MyFirst
Project in Figure 3-9, right-click the MyFirstProject branch in the
Package Explorer view. (On a Mac, control-click the MyFirstProject
branch.) Then on the resulting context menu, choose Delete.

		 When you use a view to change something, the change takes place
immediately. For example, when you choose Delete in the Package
Explorer’s context menu, whatever item you’ve selected is deleted
immediately. In a way, this behavior is nothing new. The same kind of
thing happens when you recycle a file using Windows Explorer or trash
a file using the Macintosh Finder.

	 ✓	Editor: A part of the Eclipse workbench that displays information for
you to modify. A typical editor displays information in the form of text.
This text can be the contents of a file. For example, an editor in Figure 3-11
displays the contents of the MyFirstJavaClass.java file.

		 When you use an editor to change something, the change doesn’t take
place immediately. For example, look at the editor shown in Figure 3-11.
This editor displays the contents of the MyFirstJavaClass.java
file. You can type all kinds of things in the editor. Nothing happens to
MyFirstJavaClass.java until you choose File➪Save from the Eclipse
menu bar. Of course, this behavior is nothing new. The same kind of
thing happens when you work in Microsoft Word or in any other word
processing program.

		 Like other authors, I occasionally become lazy and use the word view
when I mean view or editor instead. I also write “the Eclipse editor”
when I should write “an Eclipse editor” or “the Editor area of the Eclipse
workbench.” When you catch me blurring the terminology this way, just
shake your head and move onward. When I’m being careful, I use the
official Eclipse terminology. I refer to views and editors as parts of the
Eclipse workbench. Unfortunately, this “parts” terminology doesn’t stick
in peoples’ minds.

An area of the Eclipse workbench might contain several views or several
editors. Most Eclipse users get along fine without giving this “several views”
business a second thought (or even a first thought). But if you care about the
terminology surrounding tabs and active views, here’s the scoop:

	 ✓	Tab: Something that’s impossible to describe except by calling it a “tab.”
That which we call a tab by any other name would move us as well from
one view to another or from one editor to another. The important thing
is, views can be stacked on top of one another. Eclipse displays stacked
views as though they’re pages in a tabbed notebook. For example,
Figure 3-17 displays one area of the Eclipse workbench. The area contains
six views (Problems view, Javadoc view, Declaration view, Search view,
Console view, and LogCat view). Each view has its own tab.

72 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-17:
An area

containing
several
views.

	

		 The Console view is shown in Figure 3-17, but it doesn’t always appear
as part of the Java perspective. Normally, the Console view appears
automatically whenever the program crashes. If you want to force the
Console view to appear, choose Window➪Show View➪Other. In the
resulting Show View dialog box, expand the General branch. Finally,
within that General branch, double-click the Console item.

		 A bunch of stacked views is a tab group. To bring a view in the stack to
the forefront, you click that view’s tab.

		 By the way, all this information about tabs and views holds true for
tabs and editors. The only interesting thing is the way Eclipse uses the
word editor. In Eclipse, each tabbed page of the Editor area is an individual
editor. For example, the Editor area shown in Figure 3-18 contains
three editors (not three tabs belonging to a single editor). The three
editors display the contents of three files: MyFirstJavaClass.java,
MortgageWindow.java, and activity_main.xml.

	

Figure 3-18:
The Editor

area
contains

three
editors.

	

	 ✓	Active view or active editor: In a tab group, the active view or editor
refers to the view or editor that’s in front.

		 In Figure 3-18, the MyFirstJavaClass.java editor is the active editor.
The MortgageWindow.java and activity_main.xml editors are
inactive. (The activity_main.xml looks as though it’s active, but
that’s because, in Figure 3-18, I’m hovering the mouse over that
editor’s tab.)

73 Chapter 3: Running Standard Java Programs

Looking inside a view or an editor
The terms in this section deal with individual views, individual editors, and
individual areas:

	 ✓	Toolbar: The bar of buttons (and other little items) at the top of a view,
as shown in Figure 3-19.

	

Figure 3-19:
The tool-
bar in the
Package
Explorer

view.
	

	 ✓	Menu button: A downward-pointing arrow on the toolbar. When you
click the menu button, a drop-down list of actions appears, as shown
in Figure 3-20. Which actions you see in the list vary from one view to
another.

	

Figure 3-20:
Clicking

the menu
button in the

Package
Explorer

view.
	

	 ✓	Close button: A button that eliminates a particular view or editor, as
shown in Figure 3-21.

74 Part I: Getting Started with Java Programming for Android Developers

	

Figure 3-21:
An editor’s

Close
button.

	

	 ✓	Chevron: A double arrow indicating that other tabs should appear in a
particular area (but that the area is too narrow). The chevron shown in
Figure 3-22 has a little number 2 beside it. The 2 tells you that, in addition to
the two visible tabs, two tabs are invisible. Clicking the chevron opens a
hover tip containing the labels of all the tabs. (See Figure 3-22.)

	

Figure 3-22:
The chevron

indicates
that two

editors are
hidden.

	

	 ✓	Marker bar: The vertical ruler on the left edge of the editor area. Eclipse
displays tiny alert icons, called markers, inside the marker bar. (Refer to
Figure 3-13.)

Returning to the big picture
The two terms in this section deal with the overall look and feel of Eclipse:

	 ✓	Layout: An arrangement of certain views. The layout shown in Figure 3-3,
for example, has seven views, four of which are active:

	 •	Package Explorer view: You see it on the far left side.

	 •	Task List view and Outline views: They’re on the far right side.

	 •	Problems, Javadoc, Declaration, and Console views: They’re near
the bottom. In this area of the workspace, the Problems view is the
active view.

		 Along with all these views, the layout contains a single editor area. Any
and all open editors appear inside this editor area.

75 Chapter 3: Running Standard Java Programs

	 ✓	Perspective: A useful layout. If a particular layout is truly useful,
someone gives that layout a name. And if a layout has a name, you can
use the layout whenever you want. For example, the workbench shown
in Figure 3-3 displays Eclipse’s Java perspective. By default, the Java
perspective contains six views in an arrangement much like the
arrangement shown in Figure 3-3.

		 Along with all these views, the Java perspective contains an editor area.
(Sure, the editor area has several tabs, but the number of tabs has
nothing to do with the Java perspective.)

		 You can switch among perspectives by choosing Window➪Open
Perspective on the Eclipse main menu bar. This book focuses almost
exclusively on Eclipse’s Java perspective. But if you like poking around,
visit some of the other perspectives to get a glimpse of the power and
versatility of Eclipse.

76 Part I: Getting Started with Java Programming for Android Developers

	Part I: Getting Started with Java Programming for Android Developers
	Chapter 3: Running Standard Java Programs
	Running a Canned Java Program
	Typing and Running Your Own Code
	What’s All That Stuff in the Eclipse Window?

	About the Author

